
c 1 * I 

NASA CONTRACTOR 
REPORT 

NASA C R - 1 7 8 9 6 4  

THE EFFECT OF A SMALL I N I T I A L  CURVATURE ON THE 
FREE V I B R A T I O N  OF CLAMPED, RECTANGULAR PLATES 

B y  A. A .  Aden i j i -Fasho la  
R e s i d e n t  Research  Associate 
N a t i o n a l  Research  Counc i l  
S c i e n c e  and Eng inee r ing  Directorate 
Systems Dynamics Laboratory 

and  

A. A. Oyedi ran  
Department of Mechanical  Eng inee r ing  
Lagos State  U n i v e r s i t y  
O j o ,  Lagos,  N i g e r i a  

I n t e r i m  Repor t  

October 1 9 8 6  

P r e p a r e d  f o r  
NASA-Marshall Space F l i g h t  C e n t e r  
Marsha l l  Space F l i g h t  C e n t e r ,  A l a b a m a  35812 

1bXTJ.IAL C U R P A T U B E  ON TBE F R E E  VIEAiATJSOrJ CP 
(EASA-CE-178964)  X b K  EEEECX CE A SHALL Nel- 1 E 6 € 4  

Ibaticnal Academy of Sciences - bational Unclas 
CLAHPEC, 3 E C P A N G U l A B  ELAIES Interim BeFort 

Besearch) 24 p CSCL 2OK G3/39 43798 



T E C H N I C A L  R E P O R T  S T A N D A R D  T I T L E  P A G E '  
1. REPORT NO. 12. GOVERNMNT ACCESSION NO. 13. RECIP IENT 'S  CATALOG NO. 

NASA CR- 178964 I 
1. TITLE AND SUBTITLE 

The Effect of a Small Initial Curvature on the Free 
Vibration of Clamped, Rectangular Plates 

A. A .  Adeniii-Fashola* and A. A.  Oyediran** 
7. AUTHOR(S) 

9. PERFORMING ORGANIZATION NAME AND ADDRESS 

5. REPORT DATE 

October 1986 
6.  PERFORMlNG ORGANIZATION CODE 

8 .  PERFORMING ORGANIZATION REPOR r R 

10. WORK UNIT NO. 

George C.  Marshall Space Flight Center 
Marshall Space Flight Center, Alabama 35812 

11 1.  CONTRACT OR GRANT NO. 

NASW- 3458 
13. TYPE OF REPORS. & PERIOD COVEREC 

12. SPONSORING AGENCY NAME AND ADDRESS 

Contractor Report 
National Aeronautics and Space Administration 
Washington, D .C . 20546 1.1. SPONSORING AGENCY CODE 

15. SUPPLEMENTARY NOTES 

Prepared by Systems Dynamics Laboratory, Science and Engineering Directorate. 
*National Research Council. 

16, ABSTRACT 

An analytical method of obtaining the natural frequencies and mode shapes of 
clamped, rectangular plates having a small initial curvature is presented. 
the singular perturbation technique is used to reduce the fourth-order plate vibration 
problem to the simpler membrane problem with modified bcundary conditions that 
account for the bending effects. 
ratios varying between 0.1 and 1.0 and for the dimensionless normal prestress between 
0.1 and 1.0 have been presented for values of E ,  the normalized bending rigidity, 
rangkg between O s  0010 m d  0.2500. 

Specifically, 

The eigenfrequencies for plates with inverse aspect 

It is established that a small initial curvature has no effect on the frequency of 
vibration of the plate. However, i ts  effect is manifested in the eigenmodes. 

** Department of Mechanical Engineering, Lagos State University, Ojo, Lagos, Nigeria 

17. KEY WORDS 1 18. DlSTRlBUTlON STATEMENT 

Small initial curvature ; clamped, 
rectangular plates ; normal prestress ; 
singular perturbation technique ; 
eigenfrequencies and eigenmodes 

I Unclassif ied-Unlimited 

I 

19. SECURITY CLASSIF.  (d thlm repart) 20.  SECURITY CLASSIF. (or thim wee) 21. NO. OF PAGES 22. PRICE 

Unclassified Unclassified 23 NTI S 



TABLE OF CONTENTS 

Page 

SUMMARY 1 

I .  INTRODUCTION ......................................................... 1 

11. PROBLEM FORMULATION ................................................ 2 

111. METHOD OF SOLUTION .................................................. 4 

IV. CONCLUSION ............................................................ 13 

REFERENCES..  ................................................................ 1 4  

..................................................................... 

iii 



CONTRACTOR REPORT 

THE EFFECT OF A SMALL INITIAL CURVATURE ON THE FREE VIBRATION 
OF CLAMPED, RECTANGULAR PLATES 1 

SUMMARY 

An analytical method of obtaining the natural frequencies and mode shapes of 
clamped , rectangular plates having a small initial curvature is presented. 
the perturbation technique is used to reduce the fourth-order plate vibration problem 
to the simpler membrane problem with modified boundary conditions that account for 
the bending effects. Excellent results are obtained when the bending rigidities are 
small compared with the in-plane forces. 

Specifically, 

I .  INTRODUCTION 

The problem of a plate having a small initial curvature has long been recognized 
From small deflection theory, the total deflection is the sum of the initial deflec- 

Timoshenko and Woinowski-Krieger 

[ 11. 
tion and the deflection resulting from the applied load on a flat plate. 
particular solutions are available in the literature. 
[l] presented an exact analysis for the static deflection of simply-supported plates 
having a small initial curvature. 
plates are,  however, not available in the open literature. 

However, few 

The solutions to the vibraticn problems of such 

On the other hand, much work has been done on cylindrically-curved panels. 
The work of Sewall [ 2 ]  revealed that natural frequencies of vibration of cylindrically- 
curved paneis are obtainable in ciosed form for only two boundary conditions. Inter- 
estingly, it was found that the panel natural frequency deviates from the flat plate 
frequency only by a curvature term. This curvature term vanishes for large radii of 
curvature. However, Sewall's formulation, which is complex and involves integrals, 
does not lend itself to easy application. Blevins [ 31 presented a simplified analysis 
based entirely on Sewall's work. The Donne1 equations for a cylindrical shell were 
used and mode shapes of a single-span beam satisfying pertinent boundary conditions 
were obtained. 
other boundary conditions. 

The Rayleigh-Ritz method was used to generalize Sewall's results to 

The problem presented here is different from those of Sewall and Blevins. We 
consider the free vibrations of a clamped, normally-prestressed plate with a small 
initial curvature using the method of singular perturbations. 
are those for curved plates. 
vibration of clamped, initially-flat plates even in the absence of normal prestress 
forces. Explicit expressions for eigenvalues and mode shapes for the free vibration 
of initially-curved , normally-prestressed plates have , however, been obtained in the 
present study, in the limit when the normalized bending rigidity is small. 

The governing equations 
There are no known analytical expressions for the free 

In the absence of shearing prestress, the asymptotic eigenvalue results for 
initially-curved , normally-prestressed plates are found to correspond to those of 
initially-flat , normally-prestressed plates. 
modified. 

However, the eigenmodes are highly 
It is shown here that the eigenmodes can be decomposed into the following 



three components: 
deflection resulting from the static equilibrium condition. 

(i) the initial deflection, (ii) the flat plate deflection and (iii) the 

11. PROBLEM FORMULATION 

We consider a thin rectangular plate having an initial deflection wo'(x',y'). If 

the plate is further deflected by an amount wl ' (x ' ,y ' ,d ,  then the total deflection, 
w'(x' ,y' , T) , is 

W'(X',Y',T) = w ' (x ' ,y ')  + W1'(X',Y'yT) 
0 

The equilibrium equation given by Timoshenko and Woinowski-Krieger [ 13 is 

for the case in which there is no shearing prestress. 
tion ( 2 . 2 )  becomes 

In non-dimensional form, equa- 

where 

No is the characteristic normal prestress value while L is the characteristic length 
used in normalizing the deflection w' and the co-ordinates x' and y'. 
malized using the characteristic frequency, a ,  such that 

Time is nor- 

t = a T  and N ~ / ~ ~ ~ L ~  = 1 (2.5)  

where v is the mass per unit area of the thin plate. 
plate, we require that w = aw/an = 0 on all edges. 

For a fully-clamped, rectangular 

If we let the dimensionless initial deflection wo(x,y) be given by a double 
Fourier series of the form 

2 



W W 

W 0 ( X , Y >  = c c Pmn Sin(nm) Sin (mi-ry/b) 

m = l  n=l 

where b is the dimensionless length of the rectangular p a t e  in the y direction, the 
non-dimensional governing differential equation ( 2.3) becomes 

2 c o w  2 2 

Sin(n.rrx) Sin(m.rry/b) (2 .7 )  - C C qmn 
a w1 + - -  2 a w 1  2 a w1 

8 2  - - 8 ,  - -  
2 ay2 at2 

E v w1 
ax  

2 4  

m = l  n=l  

where 

It should be noted that the plate length in the x direction has been taken as the 
characteristic length, L.  

If w e  now make the substitution 

in equation ( 2.7) , we obtain the following dynamic equation : 

2 2 2 a u  a u  
ax 2 ay2 a t2  

2 
B 2  - + - = o  E V U - P 1  - -  2 4  2 a u  

with boundary conditions 

u(O,y,t) = u ( l , y , t )  = u(x,O,t) = u ( x , b , t )  = 0 

and initial conditions 

(2.10) 

( 2 . 1 1 )  

and the static equilibrium equation : 



with boundary conditions 

( 2 . 1 2 )  

(2.13) 

Equation (2 .10 )  is the governing differential equation for the free vibration of an 
initially- flat , anisotropically-prestressed rectangular plate, while equation ( 2 . 1 2 )  cor- 
responds to the static problem of a similar plate subjected to some generalized loading. 
Thus, the initial curvature effect is equivalent to that of some fictitious loading. 

111. METHOD OF SOLUTION 

The governing differential equations (2 .10)  and (2.12), subject to the condition 

The procedure is to seek an approximate solu- 
equations ( 2 . 1 1 )  and (2.13), respectively, are solved by the method of singular per- 
turbations, in the limit when E -+ 0'. 
tion valid in the core region of the domain. Thus, w 2  write 

u 0 = u o + E u l  O + E2 u20 + 0 ( E  3 1 
0 

The resulting membrane-type governing differential equations, valid in the core 
region, are 

V 

uo 4 0  uo + Ao2 uvo = v u v - 2  - c l o  e l 2  u: xx + @ 2  v v - o  
YY o =1 

and 

4 

2 a w  2 0  

xx YY 
6 1  +v 

(3 .2)  

v = 0 ,  1 ,  2, ... 



Here, the subscript v denotes the order in E, while the superscript o denotes outer 
solution. 
carded, 
opposed to equations (2 .10)  and (2.12)  which are fourth order. 

Terms in which the dependent variable has a negative subscript are dis- 
0 0 and $v We note that the equations ( 3 . 2 )  for uv  are of second order as 

It is easy to see that the expansions given in equation ( 3 . 1 )  cannot satisfy all 

the boundary conditions. Thus, the resulting solutions for uv and $v , which are 

equivalent to states of membrane deformation, will not be valid near the plate edges 
where bending deformations exist. 
the deformations change rapidly to satisfy the boundary conditions while the fourth 
order governing differential equations (2.10) and (2 .12)  are preserved. The solu- 
tions of these equations in the bending regions will then serve as modified boundary 
conditions for the membrane-type equations ( 3 . 2 ) .  

0 0 

Across these bending regions (boundary layers), 

For example, near x = 0,  a stretching transformation takes the form 

x = X I &  . 

In this case, we seek expansions of the form 

( 3 . 3 )  

The governing differential equations become 

v -  2 
i - u  i i 2 ui 

+ B 2  v - 2  v -  4 U 

vxxxx XXYY YY 

and 

i 2 i  i 
- + v - 4  

YY YYYY 
+ B2 + v - 2  

i 2 i  - 
- - 2  q v - 2  

XXYY 
c"xxxx - % +\Ixx 

Equations similar to ( 3 . 5 )  can be written for the regions near x = 1, y = 0,  and y = 
b .  
curvature. 

The dynamic and static problems will now be considered for arbitrary initial 

5 



3.1 The Dynamic Problem 

The dynamic problem for a fully-clamped , rectangular plate undergoing sinusoidal 
vibration can be described by the equation 

2 2 2 
2 a u -  z a u  x u = o  6 2  - - E V U - B 1  - 

a Y 2  

2 4  
2 ax 

subject to 

au 
U(0YY) = ax (0 ,y )  = 0 ; 

It is easily verified from the literature [4,5,6] or otherwise that an approximate solu- 
tion to equation (3.6), subject to the boundary conditions (3.7), can be written as 

2 2 2  2 + (m.rr/B2b )(2y-b) sin (nTx) cos (mry/b)} + 2Ao {(n T / B 1  )x ( l -x)  

2 cos (n-rrx) cos (mny/b) + (n.rr/2B1 62)(2f32b-61)(2~-1) cos (n.rrx> sin (mny/b) 

+ ( m 1 ~ / 2 6 , B , ~ b ~ ) ( 2 B , -  B2b)(2y-b) sin (nnx) cos (m.rry/b)  



where 

z1 = A. nT sin (mny/b) 

n+l  
1 z 2  = (-1) 

z3 = (Ao mT/b) sin (nTx) 

m + l  
z3  z4 = (-1) 

n+ 1 
z5 Z 6  = (-1) 

z7 = (Ao m r / b  2 BlB2) {n?rbBZ(2x-l) cos (nTx) + 2B1 sin (nTx)) 

m + l  
z7  " * =  (-1) 

while the eigenvalues A 2  are given as 

2 m 2  r2/b2 + E 4 {B1  2 n 2  T 2 + B2 m 2  x 2 / b 2 )  A = B12 n2  T2 + B2 

+ E' { ( T  4 4  /b ) (n2b2 + m 2 2  ) + ( 1 2  r 2 4  /b (n 2 4  b + m 2 > I  + 0 ( E ~ )  (3.10) 

The eigenvalues for plates with inverse aspect ratios, b ,  varying between 0 . 1  
and 1 .0  and for the dimensionless normal prestress values B1, B 2  between 0 . 1  and 

1.0 are presented in Figures 3 . 1  through 3.4 for values of E ranging between 0.0010 
and 0.2500. 

It is seen from Figure 3 . l (a )  that the zeroth and second order solutions for 
b = 1 (square plate) are essentially indistinguishable for values of E of 0.0025 and 
0.0010. 
two curves, indicating the solution to be more sensitive to the value of the normalized 
bending rigidity, E. 

decreasing values of the normalized prestress B1 and B2 as shown in Figure 3.l(a)iii 

and Figure 3 . l (b ) .  

However, as b decreases, a considerable difference develops between these 

A similar trend, albeit more pronounced, is observed for 

It is observable fram Figure 3.l(b)iii that the difference between 

7 



2 the second order and zeroth order eigenfrequency ( A  ) can be as much as four orders 
of magnitude at mode numbers m = n = 15 for values of E = 0.0250 and higher. 

Figure 3.2 shows the second order eigenfrequencies for E = 0.0010 plotted 
against the mode numbers with the inverse aspect ratio b as parameter. 
trend of decreasing values of the eigenfrequency with increasing b is easily inferred 
from the eigenfrequency expression equation (3. l o ) .  

The observed 

The same trend of decreasing eigenfrequency with increasing b is also evident 
in Figures 3.3(a) and (b)  in which the additional effects of combinations of m and n ,  
the mode numbers in the x and y directions respectively, Figure 3.3(a), and com- 
binations of P1 and b 2 ,  the normalized prestress in the x and y directions respec- 

tively, Figure 3.3( b)  , have been highlighted. 

Finally, Figures 3.4(a) and (b)  show the eigenfrequencies plotted against the 
normalized prestress for  various combinations of values of m ,  n ,  and b. A t  higher 
values of m and n ,  Figure 3.4(b), the eigenfrequency is essentially independent of 
P1 and P 2  at the higher E values. 

Next, we consider the static problem for an arbitrary initial curvature, 

3.2 The Static Problem 

The governing differential equation for a fully-clamped , rectangular plate takes 
the form 

subject to 

(3.11) 

(3.12) 

$(x,b) = - a d )  (x ,b)  = 0 
a Y  

Using the particular form of wo(x,y) given in equation ( 2 . 6 ) ,  and by compari- 

son with equation ( 2 . 1 2 ) ,  the right hand side of equation (3.11) is seen to take the 
form 

8 



Sin (nmx) Sin (m71y/b) qmn 

where q was defined in equation ( 2 . 8 )  in terms of pmn, the Fourier coefficients 
obtained by expressing any function f (x ,y) ,  describing the initial curvature, as a 
double Fourier series. The procedure is to solve equation (3.2b) for v = 0 ,  1, 2,. . . 
subject to appropriate boundary conditions. I t  is easy to see that the boundary value 
problem for $o takes the form 

mn 

2 2 

2 a $0 2 a $ o  - Sin (nmx) Sin (mny/b) qmn 2 + f 3 2  - - -  6 1  - 
a Y 2  ax 

(3.13) 

subject to 

Clearly, the solution to equation (3.13) satisfying all the conditions of equation 
(3.14) is 

Sin (nmx) Sin (mny/b) (3.15) 
$0 = Ymn 

with 

(3.16) 

To the next order of approximation, q1 must satisfy the differential equation 

+ 82 2 - a 2 + 1  = o  2 a 2 $ l  

a Y 2  
81 - 2 ax 

subject to 

(3.17) 

(3.18) 

9 



In previous studies [ 7,8] ,  equation (3.17) subject to equations (3.18) was solved 
numerically. In general, any of the standard numerical methods of solving parabolic 
partial differential equations such as the Gauss- Seidel, Jacobi and the under- and 
over-relaxation (SOR) methods can be used. However, using the singular perturba- 
tion analysis technique , analytical expressions can be obtained to leading and higher 
orders with increasing accuracy as E -F 0'. It can be shown that 

+ {A3 cosh ( a 2 x )  + A 4  sinh ( a 2 x ) )  sin ( m v / b )  

where 

and the constants A I ,  . . . , A 4  are observed to take the form 

A = - mn y /B2b 1 mn 

(3.19) 

(3.20)  

1 A 2 = - A1{(- l )m + cosh (cllb))/sinh (alb) 

A = - n n y  

A q  = - A3{(- l )"  + cosh (a,))/sinh (a,) 

mn' '1 3 

( 3 . 2 1 )  

The method of solution is further extended to $2 .  The boundary value prob- 
lem to be solved for $ 2  is 

2 a 2 q 2  
@1 - 2 ax 

2 a 2 + 2  

a Y 2  
B 2  - 

4 
$0 

= v  (3 .22 )  

subject to 



$ 2 ( x , o )  = - (A2a2 /B2)  sin (n.rrx) - (m.rr/bB2) ( A 3  cosh (a2x) + A 4  sinh (a,x)) 

$ 2 ( ~ , b )  = ( A 3  cosh (a2x) + A 4 - s i n  (a2x))  ( -1)  m m.r r /B jb  

+ (a1/B2) ( A 1  sinh (alb)  + A 2  cosh (alb)) sin (n.rrx) . ( 3 . 2 3 )  

We seek the solution to equation ( 3 . 2 2 ) ,  subject to equations ( 3 . 2 3 ) ,  in the 
form 

$2a = [g, cosh (sly> + g2 sinh (clly)l sin ( n m )  

+ [g3 cosh ( a 2 x )  + g4 sinh (a,x)] sin ( m v / b )  

+ 7 sin (n.rrx) sin (m.rry/b)  

with 

2 2  2 2 2 2  2 2 2  2 7 = - (n2.rr2 + m .rr /b ) / ( B 1  n IT + 6 ,  m IT /b ) 
L 

and 

g 1 = - A 2  a 1 2  / B  

g2 = al [ A 1  sinh (alb) + 2A2 cosh ( ulb)]  / B 2  sinh (alb) 

g3 = - Aq a2/B1 

g4 = a2 [ A 3  sinh (a,) + 2A4 cosh (a , ) ]  / P I  sinh (a,) 

Also, the expression for I J J ~ ~  take6 the form 

( 3 . 2 4 )  

( 3 . 2 5 )  

( 3 . 2 6 )  

11 



where 

m 
E l  = - E2[(-1) + cosh (alb)]  /sinh (alb) - E3b - E4b coth (alb) 

E 2  = - m n  [ A  K + A 4  K21/B2b 3 1  

2 2  2 E = A  B n 1 ~ 1 1 3 ~  a1 3 1 1  

E 4  = E 3  A 2 / A 1  

(3.27) 

n E = - E 6  [ (-1) + cosh (a,)] /sinh (a2)  - E 7 - E8 coth ( a2) 5 
(3.28)  1 

E 6  = - nn [A1 K 3  + A 2  K 4 1 / B 1  

E8 = E7 A 4 / A 3  

while 

n+ 1 K1 = nn[1 + (-1) 

K 2  = (-l)n+l nn sinh ( a 2 ) / ( a 2  + n 2  n 2 )  

K 3  = m n  [ 1 + (-1) 

K 4  = (-1) 

cosh ( ~ ~ ) ] / ( a ~ ~  + n2   IT^) 

m+ 1 2 2 2  cosh (alb)]  /b(a12 + m IT /b ) 

m + l  2 2 2  m.rr sinh (alb)/b(a12 + m IT /b  ) 

(3 .29)  

2 This completes the solution of the problem to 0 ( E  ) .  

1 2  



IV. CONCLUSION 

The small initial curvature effect on the free vibration of clamped, rectangular 
plates has been presented ., 
varying between 0 . 1  and 1.'0 and for the dimensionless normal prestress between 0 .1  
and 1 .0  have been presented for values of E ranging between 0.0010 and 0.2500 in 
Figures 3 . 1  through 3.4 .  

The eigenfrequencies for plates w i t h  inverse aspect ratios 

It is established here that a sma l l  initial curvature has no effect on the fre- 
quency of vibration of the plate. 
The eigenmodes obtained are of increasing accuracy as E -t O', similar to the trend 
for the eigenfrequencies presented in Figures 3 . 1  through 3 . 4 .  

However, its effect is manifested in the eigenmodes. 

The solutions obtained from above provide a guide for researchers that imple- 

This utility of the singular perturbation 
ment the finite difference, finite element or  other numerical schemes on the computer 
for the solution of curved plate problems. 
technique in providing simplified expressions which yield solutions valid in the 
asymptotic limit and which can serve as useful guides for the pure numerical analysis 
approach has been attested to by Nayfeh and Kamat [7]  and Ramkumar et al. [ 8 ] .  

13 
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